Choroidal inflammation, complement deposition, and accumulation of C-reactive protein (CRP) are involved in age-related macular degeneration (AMD) pathology. The pro-inflammatory signals that regulate immune cell recruitment in the choroid of patients with AMD remain to be determined. We performed cytokine profiling of human AMD and age-matched control donor tissue to identify inflammatory molecules upregulated in AMD tissue. Protein was isolated from 25 AMD and 21 control donor RPE/choroid macular punches. Total protein was quantified, and 50 µg assayed for expression of 40 cytokines using an inflammation array. We validated the elevated expression of granulocyte colony stimulating factor (G-CSF) protein by ELISA in a second cohort of 22 control and 26 AMD donors. To identify an AMD associated stressor responsible for upregulating G-CSF we assayed for changes in G-CSF protein secretion in RPE/choroid organ cultures treated with the monomeric (m)CRP, an inflammatory protein elevated in AMD. Using a multiplex array, we identified elevated G-CSF protein in the choroid of AMD donors compared to age-matched non-AMD controls. Differential expression of G-CSF was confirmed via ELISA in an independent cohort of samples (P = 0.01). The mCRP, which is deposited in AMD choroids, increased G-CSF protein secretion in RPE/choroid organ cultures. Single nuclei RNA sequencing identified choroidal endothelial cells and fibroblasts as the primary cell types responsible for increased G-CSF secretion in response to mCRP. The G-CSF receptor is expressed primarily by choroidal macrophages and dendritic cells and anti-G-CSFR colocalizes with anti-CD45 and anti-CD68 in human donor choroid tissue. Elevated G-CSF expression in AMD donor tissue as a result of increased levels of mCRP may be involved in immune cell recruitment in AMD contributing to inflammatory stress in the choroid.
Read full abstract