Abstract
ABSTRACT Clinical relevance Choroidal thickness measurement is gaining popularity in clinical practice and research as an early indicator of myopia progression. Understanding the influence of temperature on choroidal thickness changes will improve the reliability of the measures. Background It has been suggested that environmental temperature may affect choroidal thickness and blood flow, with potential implications for ocular disease and refractive development. This study investigates the effect of changes in eyelid/ocular adnexa temperature on choroidal thickness. Methods In a paired-eye study, 20 young, healthy subjects received a warm stimulus (heat pack) over one closed eye and simultaneously a cold stimulus (ice pack) over the other for 10 min. Eyelid temperatures were monitored with thermal probes, and optical coherence tomography scans of the retina and choroid were taken before and after heating and cooling, and then every 5 min during a 15-min recovery period. Retinal and choroidal thicknesses were measured across the macular region (6 mm), including the subfoveal (1 mm), parafoveal (1–3 mm), and perifoveal (3–5 mm) regions, and compared between the cooled and warmed eyes. Results When the thermal stimuli were applied, eyelid surface temperatures changed predictably and remained significantly different (by approximately 10–15°C) between the eyes after 2 min (p < .001). Relative to the warmed eye, macular choroidal thickness in the cooled eye increased significantly after 10 min of treatment (p = .004). This choroidal thickening response occurred in the subfoveal, parafoveal, and perifoveal regions (all p < .05). Upon removal of the thermal stimuli, choroidal thickness rapidly returned to the baseline and was no longer different between the cooled and warmed eye (p = .641). Conclusion Cooling the anterior eye by application of a cold stimulus directly onto the closed eyelid caused a small but significant increase in choroidal thickness relative to warming the anterior eye, demonstrating that the choroid can modulate its thickness rapidly and transiently in response to local temperature changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.