Natural substances and bioactive agents possess great potential in wound care based on their ability to promote healing and prevent infection. This study focused on the fabrication of antibacterial wound dressings by combining gelatin (G), tragacanth gum (TG), and galbanum essential oil (GEO) as a loaded drug. TG addition resulted in more elastic and flexible films besides enabling encapsulation of the hydrophobic GEO into the biopolymeric matrix. GEO was utilized as an antibacterial and a wound-healing enhancer for open wounds such as incisions. Field emission scanning electron microscopy (FE-SEM) analysis revealed a porous film structure after GEO incorporation. Higher GEO concentration caused reduced swelling and slower degradation. Water vapor transfer rate varied from 596 to 894 g/m2.day, making the films suitable for wound dressings. GEO release exhibited a two-phase profile with prolonged diffusion-controlled release for a higher content of GEO. The films demonstrated dose-dependent antimicrobial activity against S. aureus and E. coli strains. Effectiveness and noteworthy application of this research were approved by scratch assay on human dermal fibroblast cells, and films with 3 % GEO showed 79.42 % wound closure, which is significantly higher than the control sample (55.15 %), indicating promoted cell migration and promising wound healing properties.