Purpose Programmed cell death factor 10 (PDCD10) is associated with intercellular junction, cytoskeleton organization, cell proliferation, apoptosis, exocytosis, and angiogenesis. However, the role of PDCD10 in human cancer is unclear. This study aims to explore the role of PDCD10 in various tumors and its possible mechanism through bioinformatics analysis. Methods We verified the expression of the PDCD10 gene based on data from the ONCOMINE, TIMER2.0, and TISDB databases. The correlation of PDCD10 with prognosis of patients with different tumors was analyzed using data from the GEPIA2 database. Proteins bound to PDCD10 were analyzed from the STRING database. PDCD10, PDCD10-binding proteins, and associated candidate genes were analyzed in DAVID for functional and pathway analyses. We also evaluated the immunological, clinical, and genetic aspects of distinct cancers by using TIMER2.0 and the connection between PDCD10 expression and tumor immune subtypes by using TISDB. Single-cell sequencing data from the CancerSEA database were used to characterize cancer cell functional states and generate heat maps. Results PDCD10 overexpression is linked to certain molecular subtypes of human cancer. Low PDCD10 expression in patients with bladder urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), kidney chromophobe carcinoma (KICH), brain lower grade glioma (LGG), pancreatic adenocarcinoma (PAAD), uterine corpus endometrial carcinoma (UCEC), oral squamous cell carcinoma (OSCC), and esophageal adenocarcinoma (ESAD) was correlated with favorable OS, whereas high PDCD10 expression in patients with LUSC, KIRC, READ, SKCM, and THYM was correlated with good prognosis. STRING network prediction results showed that 20 proteins, namely, paxillin (PXN), CCM2 scaffold protein (CCM2), TRAF3 interacting protein 3 (TRAF3IP3), FGFR1 oncogene partner 2 (FGFR1OP2), chromosome 4 open reading frame 19 (C4orf19), suppressor of IKBKE 1 (SIKE1), serine/threonine kinase 25 (STK25), striatin (STRN), protein phosphatase 2 catalytic subunit alpha (PPP2CA), mammalian sterile-20-like kinase 4 (MST4), MOB family member 4 (MOB4), protein phosphatase 2 scaffold subunit Abeta (PPP2R1B), sarcolemma-associated protein (SLMAP), serine/threonine kinase 24 (STK24), striatin 4 (STRN4), STRN3, protein phosphatase 2 scaffold subunit A alpha (PPP2R1A), striatin interacting protein 1 (STRIP1), CTTNBP2 N-terminal like (CTTNBP2NL), and cortactin binding protein 2 (CTTNBP2), can bind to PDCD10. Gene enrichment analysis suggested that PDCD10 is involved in the occurrence of different tumors through the Hippo signalling pathway, RNA transport, mRNA monitoring pathway, endocytosis, and T cell receptor signalling pathway. An inverse relationship was found between PDCD10 expression and cancer-associated fibroblasts in LUSC and TGCT, and PDCD10 expression was strongly connected with immunological subtypes, such as C1 (wound healing), C2 (interferon-gamma dominant), C3 (inflammation), C4 (lymphocyte depletion), C5 (immune silenced), and C6 (TGF-beta dominant). Finally, analysis of single-cell sequencing data revealed that PDCD10 expression is linked to epigenetic reprogramming, DNA repair, cell cycle progression, cell differentiation, inflammation, cell proliferation, cell differentiation, cell invasion, and angiogenesis. Conclusion The results of our investigation demonstrate that PDCD10 has an oncogenic function in many cancer types. This study provides a reference for future research on antitumor therapeutic targets.