Older people are limited by the pedestrian environment in human settlements and are prone to travel difficulties, falls, and stumbles. Furthermore, we still lack systematic knowledge of the pedestrian environment affecting the gait of older people. The purpose of this review is to synthesize current evidence of effective human settlement pedestrian environments interfering with gait in older people. The systematic effects of the human settlement pedestrian environment on gait in older people are discussed. Databases such as Web of Science, Medline (via PubMed), Scopus, and Embase were searched for relevant studies up to June 2022. The literature was screened to extract relevant evidence from the included literature, assess the quality of the evidence, and analyze the systematic effects of the pedestrian environment on gait in older people. From the 4297 studies identified in the initial search, 11 systematic reviews or meta-analysis studies were screened, from which 18 environmental factors and 60 gait changes were extracted. After removing duplicate elements and merging synonymous features, a total of 53 relationships between environmental factors and gait change in older people were extracted: the main human settlement pedestrian environmental factors affecting gait change in older people in existing studies were indoor and outdoor stairs/steps, uneven and irregular ground, obstacles, walking path turns, vibration interventions, mechanical perturbation during gait, and auditory sound cues. Under the influence of these factors, older people may experience changes in the degree of cautiousness and conservatism of gait and stability, and their body posture performance and control, and muscle activation may also be affected. Factors such as ground texture or material, mechanical perturbations during gait, and vibration interventions stimulate older people's understanding and perception of their environment, but there is controversy over the results of specific gait parameters. The results support that human settlements' pedestrian environment affects the gait changes of older people in a positive or negative way. This review may likely contribute evidence-based information to aid communication among practitioners in public health, healthcare, and environmental construction. The above findings are expected to provide useful preference for associated interdisciplinary researchers to understand the interactions among pedestrian environments, human behavior, and physiological characteristics.
Read full abstract