para-Aminobenzoic acid (PABA) has long been used as an indicator of the completeness of 24-h urine collection by determination of total urinary excretion of PABA and its metabolite, N-acetyl-PABA. N-Acetyl-PABA is formed by human arylamine N-acetyltransferase 1 (NAT1) in liver and intestine. This intestinal metabolism may reduce the urinary recovery of PABA due to secretion of N-acetyl-PABA into the intestinal lumen. In the present study, the effect of intestinal metabolism of PABA on its absorption was quantitatively evaluated by the in situ single-pass perfusion method using rat intestine expressing rat arylamine N-acetyltransferase 2 (Nat2), which is similar to human NAT1. PABA was taken up in a linear fashion in the intestinal mucosa and its effective permeability coefficient indicated 100% absorption. The metabolism of PABA to N-acetyl-PABA reached saturation and substrate inhibition was observed at higher PABA concentrations. These phenomena were also observed in an in vitro study using the intestinal S9 fraction. Interestingly, N-acetyl-PABA was transported more quickly into the vein than into the intestinal lumen. Both the substrate inhibition of Nat2 and transporter-mediated efflux of N-acetyl-PABA into veins result in low secretion levels of N-acetyl-PABA into the intestinal mucosa over a wide range of PABA concentrations.
Read full abstract