Employing the tetracycline repressor tetR and the wild-type hCMV major immediate-early promoter, we have developed a highly sensitive tetracycline-inducible transcription switch in mammalian cells (T-REx™; Invitrogen, Carlsbad, CA, USA). In view of the previous difficulty in achieving regulatable gene expression in recombinant HSV vector systems, we constructed a T-REx™-encoding replication-defective HSV-1 recombinant, QR9TO-lacZ, that encodes two copies of the tetR gene controlled by the HSV-1 immediate-early ICP0 promoter and a reporter, the LacZ gene, under the control of the tetO-bearing hCMV major immediate-early promoter. Infection of cells, such as Vero, PC12, and NGF-differentiated PC12 cells, with QR9TO-lacZ led to 300- to 1000-fold tetracycline-regulated gene expression. Moreover, the expression of the LacZ gene by QR9TO-lacZ can be finely controlled by tetracycline in a dose-dependent fashion. Efficiently regulated gene expression can also be achieved in vivo following intracerebral and footpad inoculations in mice. The demonstrated capability of T-REx™ for achieving high levels of sensitively regulated gene expression in the context of the HSV-1 genome will significantly expand the utility of HSV-based vector systems for studying gene function in the nervous system and delivering regulated gene expression in therapeutic applications, particularly in the treatment of CNS diseases.