Kainic acid-induced seizures in rats represent an established animal model for human temporal lobe epilepsy. However, it is well-known that behavioral responses to the systemic administration of kainic acid are inconsistent between animals. In this study, we examined the relationship between expression of genes, neuropathological damage, and behavioral changes (seizure intensity and body temperature) in rats after systemic administration of kainic acid. The considerable differences in the response to kainic acid-induced seizures were observed in rats after a single administration of kainic acid (12 mg/kg i.p.). There was no detection of the expression of heat shock protein hsp-70 mRNA and HSP-70 protein in brain of vehicle-treated controls and in animals exhibiting weak behavioral changes (stage 1–2). A moderate expression of hsp-70 mRNA was detected throughout all regions (the pyramidal cell layers of CA1–3 and dentate gyrus) of the hippocampus, the basolateral, lateral, central and medial amygdala, the piriform cortex, and the central medial thalamic nucleus of rats that developed moderate seizures (stage 3–4). Marked expression of hsp-70 mRNA was detected in the all regions (cingulate, parietal, somatosensory, insular, entorhinal, piriform cortices) of cerebral cortex and all regions of hippocampus, and the central medial thalamic nucleus of the rats that developed severe seizures (stage 4–5). In addition, marked HSP-70 immunoreactivity was detected in the pyramidal cell layers of CA1 and CA3 regions of hippocampus, all regions (cingulate, parietal, somatosensory, insular, piriform cortices) of cerebral cortex, and the striatum of rats that developed severe seizures (stage 4–5). Furthermore, a marked expression of cyclooxygenase-2 (COX-2) mRNA and brain-derived neurotrophic factor (BDNF) mRNA levels by kainic acid-induced behavioral seizures (stage 3–4 or stage 4–5) was detected in all hippocampal pyramidal cell layers, granule layers of dentate gyrus, piriform cortex, neocortex, and amygdala. The present study suggest that the behavioral changes (seizure intensity and body temperature) and neuropathological damage after systemic administration of kainic acid are inconsistent between animals, and that these behavioral changes (severity of kainic acid-induced limbic seizures) might be correlated with gene expression of hsp-70 mRNA, COX-2 mRNA, and BDNF mRNA in rat brain.
Read full abstract