The paper deals with the numerical analysis of a helicopter rotor in hover conditions, including aeroelastic effects. In existing literature the effects of an aircraft structural deformation on airloads distribution and performance are fairly well described but mainly for airplanes. The purpose of the presented work is to indicate the possible influence of blades elasticity on helicopter rotor loads and performance in hover. Additionally, it aims to validate a new computational method based on a set of experimental results for a UH-60A helicopter rotor. The method used combines a high fidelity Navier-Stokes aerodynamic model coupled with a low-order beam structural model. This approach made it possible to take into consideration blade deformations in simulations and revealed the high influence of aeroelastic effects on rotor loads and performance at hover conditions. To authenticate the results, the presented method was validated with experimental data from two different flight test programs, three small-scale wind tunnel tests and one full-scale wind tunnel test. They were conducted for the UH-60A helicopter rotor by different organizations. The comparison of results revealed that the created computational method has high accuracy.
Read full abstract