Polyethylene plastic waste was selected as pyrolysis feedstock. This plastic waste is not recycled mechanically and is abundantly available at the landfill. The plastic-type of low and high-density polyethylene (LDPE and HDPE) was converted into pyrolysis liquid fuel (PLF). This study aims to characterize the physicochemical properties of the PLF to attest to its potential use as a kerosene fuel for household purposes. The PLF was generated from the collecting of household plastic waste through pyrolysis. A design of the simple non-catalytic semi-batch reactor was applied to pyrolyze this plastics waste into PLF at about 360 °C and isothermal residence time up to about 1 hour. The high enough PLF yield of 50.3% (v/w) and 77.0% (v/w) was obtained from LDPE and HDPE plastics waste, respectively. The dominance of alkane (CH) and alkenes (C=C) functional groups of PLF and commercial kerosene fuel was analyzed by the Fourier transform infrared spectroscopy (FT-IR) spectra. Gas Chromatography-Mass Spectrometer (GC-MS) analysis indicates that most PLF substances in the form of tetradecane (C14H30), pentadecane (C15H32), hexadecane (C16H34), octadecene (C18H36), eicosane (C20H42) are similar to commercial kerosene substances. The combustion properties of this PLF are so similar to the standard values of the kerosene fuel. The combination of thermal efficiency, ηT using wick stove and PLF from LDPE and HDPE of 45.66% and 32.37%, respectively was obtained in this work.