Plant species diversity may be considerably underestimated, especially in evolutionarily complex genera and in diversity hotspots that have enabled long-term species persistence and diversification, such as the Balkan Peninsula. Here, we address the topic of underexplored plant diversity and underlying evolutionary and biogeographic processes by investigating the hygrophytic mountain species complex of Cardamine acris s.l. distributed in the Balkans (three subspecies within C. acris) and northwestern Anatolia (C. anatolica). We performed a series of phylogenetic and phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) and target enrichment (Hyb-Seq) data in combination with habitat suitability modelling. We found C. anatolica as a clade nested within the Balkan C. acris, probably resulting from a founder event, and uncovered three allopatric cryptic lineages within C. acris subsp. acris, allowing us to recognise a total of six entities in this complex. We observed the deepest genetic split within C. acris subsp. acris in the western Balkans, which was at odds with taxonomy and showed no distribution gap. We inferred vicariance as the most likely process for population divergence in the Balkans, accompanied by gene flow between the recognised entities, which was consistent with the modelled habitat suitability dynamics. Furthermore, we discovered several polyploid populations in C. acris, representing both pure intra- and inter-lineage hybrid polyploids, but detected only minor traces of hybridization with related congeners. Overall, our results illustrate that diverse evolutionary processes may influence the history of mountain plant species in the Balkan Peninsula, including vicariance, reticulation, polyploidization and cryptic diversification.
Read full abstract