Layered semiconductor materials have garnered significant attention in the thermoelectric field due to their excellent electrical property and intrinsically low lattice thermal conductivity. The septuple atomic-layered ternary compound SnBi2Se4 is reported as a promising thermoelectric material in both bulk and single-layer structures based on theoretical calculations, though experimental investigation remains unexplored. In this work, the melting and hot-press sintering methods were adopted to synthesize the septuple atomic-layered SnBi2Se4. Its unique layered crystal structure contributed to significant anisotropic transport properties and reduced thermal conductivity. However, its thermoelectric performance is constrained by a low carrier concentration that limits electrical conductivity. To solve this issue, the high-valent transition metal Nb was doped at Bi site to provide additional electrons. This doping resulted in a noticeable improvement in the performance of septuple atomic-layered SnBi2Se4 due to increased electrical conductivity and decreased thermal conductivity. Finally, a peak ZT ∼ 0.17 was obtained for SnBi1.97Nb0.03Se4 at 723 K, suggesting the effectiveness of Nb doping in enhancing the performance. These results indicate that septuple atomic-layered SnBi2Se4 is a highly promising thermoelectric material, though further performance improvements are needed.
Read full abstract