The pathogen Phomopsis vexans causes leaf blight, fruit rot, and damping off in brinjal plants, all of which are extremely detrimental. The pathogen affects host plant photosynthetic efficiency and fruit quantity and quality. An appreciation of the pathogenicity of P. vexans is essential for the effective control of infections in the field. Consequently, the goal of this study was to characterise P. vexans in terms of their biochemistry, molecular diversity, and pathogenicity. In terms of cellulase (97.7 U), catalase (12.2 U), and ascorbate peroxidase (147.3 U) activity, isolate PV1 performed best, followed by PV5 (CL-97.0 U, CAT-11.1 U and APX-144.4 U), and PV8 (CL-88.8 U, CAT-9.8 U and APX-141.9 U). In a greenhouse pathogenicity test, isolate PV1 had the highest incidence (97%) and severity (88.6%) of disease, whereas isolate PV6 showed the lowest incidence (57.2%) and severity (70%) of disease. The biochemical enzyme activity of P. vexans corresponds well with its greenhouse pathogenicity results, and its combination can be exploited to identify pathogenic P. vexans isolates. Using RAPD and ISSR primers, molecular characterisation indicated genetic diversity but could not distinguish isolates by geographical origin or pathogenicity. The pathogen P. vexans was verified by ITS1 and ITS4 molecular analysis, and the sequences were subsequently deposited in the NCBI database. In conclusion, the enzyme activity relevant to pathogenicity (CL, CAT and APX) in conjunction with the invivo pathogenicity assay might be utilised to differentiate between pathogenic (virulent) and non-pathogenic (avirulent) P. vexans isolates and develop suitable disease management strategies.