Local mate competition (LMC) occurs when brothers compete with each other for mating opportunities, resulting in selection for a female-biased sex ratio within local groups. If multiple females oviposit in the same patch, their sons compete for mating opportunities with non-brothers. Females, in the presence of other females, should thus produce relatively more sons. Sex ratio theory also predicts a more female-biased sex ratio when ovipositing females are genetically related, and sex-ratio responses to foundress size if it differentially affects fitness gains from sons versus daughters. The mating system of the parasitoid wasp Ooencyrtus kuvanae meets assumptions of LMC. Females insert a single egg into each accessible egg of gypsy moth, Lymantria dispar, host egg masses. Wasps complete development inside host eggs and emerge en masse, as sexually mature adults, resulting in intense competition among brothers. We tested the hypothesis that O. kuvanae exhibits LMC by manipulating the number of wasp foundresses on egg masses with identical numbers of eggs. As predicted by LMC theory, with increasing numbers of wasp foundresses on an egg mass, the proportions of emerging sons increased. In contrast, the presence of a sibling compared to a non-sibling female during oviposition, or the size of a female, did not affect the number or sex ratio of offspring produced. The O. kuvanae system differs from others in that larvae do not compete for local resources and thus do not distort the sex ratio in favor of sons. With no resource competition among O. kuvanae larvae, the sex ratio of emergent son and daughter wasps is due entirely to the sex allocation by ovipositing wasp foundresses on host egg masses.
Read full abstract