Respiratory virus infections have been suggested to be predisposing factors for meningococcal disease. Respiratory syncytial virus (RSV) affects young children in the age range at greatest risk of disease caused by Neisseria meningitidis. It has been previously shown that glycoprotein G expressed on the surface of RSV-infected HEp-2 cells (a human epithelial cell line) contributed to higher levels of binding of meningococci compared with uninfected cells. The aim of the present study was to examine the effect of RSV infection on expression of surface molecules native to HEp-2 cells and their role in bacterial binding. Flow cytometry and fluorescence microscopy were used to assess bacterial binding and expression of host cell antigens. Some molecules analysed in this study have not been reported previously on epithelial cells. RSV infection significantly enhanced the expression of CD15 ( P<0.05), CD14 ( P<0.001) and CD18 ( P<0.01), and the latter two contributed to increased binding of meningococci to cells but not the Gram-positive Streptococcus pneumoniae.