Microorganisms live in close association with metazoan hosts and form symbiotic microbiotas that modulate host biology. Although the function of host-associated microbiomes may change with composition, hosts within a population can exhibit high turnover in microbiome composition among individuals. However, environmental drivers of this variation are inadequately described. Here, we test the hypothesis that this diversity among the microbiomes of Aedes albopictus (a mosquito disease vector) is associated with the local climate and land-use patterns on the high Pacific island of O 'ahu, Hawai 'i. Our principal finding demonstrates that the relative abundance of several bacterial symbionts in the Ae. albopictus microbiome varies in response to a landscape-scale moisture gradient, resulting in the turnover of the mosquito microbiome composition across the landscape. However, we find no evidence that mosquito microbiome diversity is tied to an index of urbanization. This result has implications toward understanding the assembly of host-associated microbiomes, especially during an era of rampant global climate change.