From the moment the SARS-CoV-2 virus was identified in December 2019, the COVID-19 disease spread around the world, causing an increase in hospitalisations and deaths. From the beginning of the pandemic, scientists tried to determine the major cause that led to patient deaths. In this paper, the background to creating a research model was diagnostic problems related to early assessment of the degree of damage to the lungs in patients with COVID-19. The study group comprised patients hospitalised in one of the temporary COVID hospitals. Patients admitted to the hospital had confirmed infection with SARS-CoV-2. At the moment of admittance, arterial blood was taken and the relevant parameters noted. The results of physical examinations, the use of oxygen therapy and later test results were compared with the condition of the patients in later computed tomography images and descriptions. The point of reference for determining the severity of the patient's condition in the computer imagery was set for a mild condition as consisting of a percentage of total lung parenchyma surface area affected no greater than 30%, an average condition of between 30% and 70%, and a severe condition as greater than 70% of the lung parenchyma surface area affected. Patients in a mild clinical condition most frequently had mild lung damage on the CT image, similarly to patients in an average clinical condition. Patients in a serious clinical condition most often had average levels of damage on the CT image. On the basis of the collected data, it can be said that at the moment of admittance, BNP, PE and HCO3- levels, selected due to the form of lung damage, on computed tomography differed from one another in a statistically significant manner (p < 0.05). Patients can qualify for an appropriate group according to the severity of COVID-19 on the basis of a physical examination and applied oxygen therapy. Patients can qualify for an appropriate group according to the severity of COVID-19 on the basis of BNP, HCO3 and BE parameters obtained from arterial blood.