BackgroundA small proportion of the older population accounts for a high proportion of healthcare use. For effective use of limited healthcare resources, it is important to identify the group with greatest needs. The aim of this study was to explore frequency and reason for hospitalisation and cumulative mortality, in an older population at predicted high risk of hospital admission, and to assess if a prediction model can be used to identify individuals with the greatest healthcare needs. Furthermore, discharge diagnoses were explored to investigate if they can be used as basis for specific interventions in the high-risk group.MethodsAll residents, 75 years or older, living in Östergötland, Sweden, on January 1st, 2017, were included. Healthcare data from 2016 was gathered and used by a validated prediction model to create risk scores for hospital admission. The population was then divided into groups by percentiles of risk. Using healthcare data from 2017–2018, two-year cumulative incidence of hospitalisation was analysed using Gray´s test. Cumulative mortality was analysed with the Kaplan–Meier method and primary discharge diagnoses were analysed with standardised residuals.ResultsForty thousand six hundred eighteen individuals were identified (mean age 82 years, 57.8% women). The cumulative incidence of hospitalisation increased with increasing risk of hospital admission (24% for percentiles < 60 to 66% for percentiles 95–100). The cumulative mortality also increased with increasing risk (7% for percentiles < 60 to 43% for percentiles 95–100). The most frequent primary discharge diagnoses for the population were heart diseases, respiratory infections, and hip injuries. The incidence was significantly higher for heart diseases and respiratory infections and significantly lower for hip injuries, for the population with the highest risk of hospital admission (percentiles 85–100).ConclusionsIndividuals 75 years or older, with high risk of hospital admission, were demonstrated to have considerable higher cumulative mortality as well as incidence of hospitalisation. The results support the use of the prediction model to direct resources towards individuals with highest risk scores, and thus, likely the greatest care needs. There were only small differences in discharge diagnoses between the risk groups, indicating that interventions to reduce hospitalisations should be personalised.Trial registrationclinicaltrials.gov Identifier: NCT03180606, first posted 08/06/2017.