This work demonstrates the use of a solid-state nanopore detector to monitor the activity of a single molecule of a model enzyme, horseradish peroxidase (HRP). This detector includes a measuring cell, which is divided into cis- and trans- chambers by a silicon nitride chip (SiN structure) with a nanopore of 5 nm in diameter. To entrap a single HRP molecule into the nanopore, an electrode had been placed into the cis-chamber; HRP solution was added into this chamber after application of a negative voltage. The reaction of the HRP substrate, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), oxidation by the enzyme molecule was performed in the presence of hydrogen peroxide. During this reaction, the functioning of a single HRP molecule, entrapped in the nanopore, was monitored by recording the time dependence of the ion current flowing through the nanopore. The approach proposed in our work is applicable for further studies of functioning of various enzymes at the level of single molecules, and this is an important step in the development of single-molecule enzymology.
Read full abstract