Abstract

External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP’s secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages.

Highlights

  • Proteins, representing polymers of amino acids, are among the main types of biopolymers, playing various vital functions in living organisms [1]

  • Additional experiments were performed in order to determine how shielding of the horseradish peroxidase (HRP) solution from external electromagnetic fields affected the measurement results

  • We present the results obtained after Atomic force microscopy (AFM) scanning of bare mica substrates, obtained after their incubation in the analyzed HRP solutions

Read more

Summary

Introduction

Proteins, representing polymers of amino acids, are among the main types of biopolymers, playing various vital functions in living organisms [1]. The functionality of protein systems (including enzymatic ones) can be altered under the action of magnetic [2] and electromagnetic fields [3,4,5,6,7,8,9,10]. In this way, in previous studies, we demonstrated that electric fields, triboelectrically induced by liquid flow through polymeric pipes of thermal stabilization coils, influence the adsorbability of the horseradish peroxidase (HRP) enzyme protein onto mica substrates [5,6,7]. Lopes et al [9] found that 2450 MHz [11] microwave radiation can cause a significant (up to >80%) loss in the HRP enzymatic activity after a

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call