Ferritins are primary iron storage proteins and play a crucial role in iron storage and detoxification. Yeast two-hybrid method was employed to screen the cDNA library of Phascolosoma esculenta. Sequence of positive colony FER147 was analyzed. The higher similarity and conserved motifs for ferritin indicated that it belonged to a new member of ferritin family. The interaction between Ferritin and Fer147 was further confirmed through co-immunoprecipitation. The pET-28a-FER147 prokaryotic expression vector was constructed. The expressed recombinant Fer147 was then isolated, purified, and refolded. When ferritins were treated by different heavy metals, several detection methods, including scanning electron microscopy (SEM), circular dichroism (CD), and inductively coupled plasma-mass spectrometry (ICP-MS) were applied to examine the structures and functions of the new protein Fer147, recombinant P. esculenta ferritin (Rferritin), and natural horse-spleen ferritin (Hferritin). SEM revealed that the three ferritin aggregates changed obviously after different heavy metals treatment, meanwhile, a little different in aggregates were detected when the ferritins were trapped by the same heavy metal. Hence, changes in aggregation structure of the three proteins are related to the nature of the different heavy metals and the interaction between the heavy metals and the three ferritins. CD data suggested that the secondary structure of the three ferritins hardly changed after different heavy metals were trapped. ICP-MS revealed that the ferritins exhibit different enrichment capacities for various heavy metals. In particular, the enrichment capacity of the recombinant Fer147 and Rferritin is much higher than that of hferritin.
Read full abstract