Sulfatase (STS) and sulfotransferases (SULT) have important role in the biosynthesis and action of steroid hormones. STS catalyzes the hydrolysis of estrone-sulfate (E1-S) and dehydroepiandrosterone-sulfate (DHEA-S), while sulfotransferases catalyze the reverse reaction and require 3-phosphoadenosine-5-phosphosulfate as a sulfate donor. These enzymes control the concentration of active estrogens and androgens in peripheral tissues. Aberant expression of STS and SULT genes has been found in both, benign hormone-dependent diseases and hormone-dependent cancers. The aim of this review is to present the current knowledge on the role of STS and SULT in gynecological cancers, endometrial (EC) and ovarian cancer (OC). EC is the most common and OC the most lethal gynecological cancer. These cancers primarily affect postmenopausal women and therefore rely on the local production of steroid hormones from inactive precursors, either DHEA-S or E1-S. Following cellular uptake by organic anion transporting polypeptides (OATP) or organic anion transporters (OAT), STS and SULT regulate the formation of active estrogens and androgens, thus disturbed balance between STS and SULT can contribute to the onset and progression of cancer. The importance of these enzymes in peripheral estrogen biosynthesis has long been recognized, and this review provides new data on the important role of STS and SULT in the formation and action of androgens, their regulation and inhibition, and their potential as prognostic biomarkers.
Read full abstract