Dendrobium orchids, which are among the most well-known species of orchids, are appreciated for their aesthetic appeal across the globe. Furthermore, due to their strict living conditions, they have accumulated high levels of active ingredients, resulting not only in their medicinal value but also in their strong ability to respond to harsh environments. The TCP gene family plays an important role in plant growth and development, and signal transduction. However, these genes have not been systematically investigated in Dendrobium species. In this study, we detected a total of 24, 23, and 14 candidate TCP members in the genome sequences of D. officinale, D. nobile, and D. chrysotoxum, respectively. These genes were classified into three clades on the basis of a phylogenetic analysis. The TCP gene numbers among Dendrobium species were still highly variable due to the independent loss of genes in the CIN clade. However, only three gene duplication events were detected, with only one tandem duplication event (DcTCP9/DcTCP10) in D. chrysotoxum and two pairs of paralogous DoTCP gene duplication events (DoTCP1/DoTCP23 and DoTCP16/DoTCP24) in D. officinale. A total of 25 cis-acting elements of TCPs related to hormone/stress and light responses were detected. Among them, the proportions of hormone response, light response, and stress response elements in D. officinale (100/421, 127/421, and 171/421) were similar to those in D. nobile (83/352, 87/352, and 161/352). Using qRT-PCR to determine their expression patterns under MeJA treatment, four DoTCPs (DoTCP2, DoTCP4, DoTCP6, and DoTCP14) were significantly upregulated under MeJA treatment, which indicates that TCP genes may play important roles in responding to stress. Under ABA treatment, seven DoTCPs (DoTCP3, DoTCP7, DoTCP9, DoTCP11, DoTCP14, DoTCP15, and DoTCP21) were significantly upregulated, indicating that TCP genes may also play an important role in hormone response. Therefore, these results can provide useful information for studying the evolution and function of TCP genes in Dendrobium species.