One of the challenges of using Time-of-Flight (ToF) sensors for dimensioning objects is that the depth information suffers from issues such as low resolution, self-occlusions, noise, and multipath interference, which distort the shape and size of objects. In this work, we successfully apply a superquadric fitting framework for dimensioning cuboid and cylindrical objects from point cloud data generated using a ToF sensor. Our work demonstrates that an average error of less than 1 cm is possible for a box with the largest dimension of about 30 cm and a cylinder with the largest dimension of about 20 cm that are each placed 1.5 m from a ToF sensor. We also quantify the performance of dimensioning objects using various object orientations, ground plane surfaces, and model fitting methods. For cuboid objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 4% and 9% using the bounding technique and between 8% and 15% using the mirroring technique across all tested surfaces. For cylindrical objects, our results show that the proposed superquadric fitting framework is able to achieve absolute dimensioning errors between 2.97% and 6.61% when the object is in a horizontal orientation and between 8.01% and 13.13% when the object is in a vertical orientation using the bounding technique across all tested surfaces.