While rat models are frequently used for studying tendon healing, there is a lack of research comparing various rotator cuff repair methods in this animal model. Determining the most effective method to begin with is pivotal for biological studies focused on healing augmentation. No study to date has shown the superiority of one repair over the other for rotator cuff repair in a rat model. We performed a biomechanic study using a rat model to co the strength of four common grasping techniques. We assessed if the bone tunnel trajectory influenced the early biomechanics of the repair at postoperative day 0 (POD0). Sixty cadaveric rat shoulders were divided equally into 6 groups; 4 groups were allocated for the biomechanical strength testing based on either a 1) modified Mason Allen (MM), 2) modified Kessler loop (MK), 3) horizontal mattress (HM), or a 3) simple interrupted stitch (SS) technique. The remaining 2 groups were used to evaluate two tunneling angles: a transverse tunnel (TT) that was perpendicular to the long humeral axis, or a longitudinal tunnel (LT) that was 30◦ angle to the humerus. MM had the highest mean failure load, followed by MK, HM, and SS. Pairwise comparison revealed that MM was stronger than SS and HM (P = 0.025 and P = 0.026, respectively), although similar to the MK (P = 0.881). MM was stiffer than MK (P < 0.001), HM (P = 0.008), and SS (P < 0.001). The TT and LT had similar loads to failure and stiffness. Our study suggests that the MM technique provides a stronger and stiffer rotator cuff repair than the others.
Read full abstract