Multi-layer horizontal well development and hydraulic fracturing are key techniques for enhancing production from shale oil reservoirs. During well development, the fracturing performance and well-pad production are affected by depletion-induced stress changes. Previous studies generally focused on the stress and fracturing interference within the horizontal layers, and the infilled multi-layer development was not thoroughly investigated. This study introduces a modeling workflow based on finite element and displacement discontinuity methods that accounts for dynamic porous media flow, geomechanics, and hydraulic fracturing modeling. It quantitatively characterizes the in situ stress alteration in various layers caused by the historical production of parent wells and quantifies the hydraulic fracturing interference in infill wells. In situ stress changes and reorientation and the non-planar propagation of hydraulic fractures were simulated. Thus, the workflow characterizes infill-well fracturing interferences in shale oil reservoirs developed by multi-layer horizontal wells. Non-planar fracturing in infill wells is affected by the parent-well history production, infilling layers, and cluster number. They also affect principal stress reorientations and reversal of the fracturing paths. Interwell interference can be decreased by optimizing the infilling layer, infill-well fracturing timing, and cluster numbers. This study extends the numerical investigation of interwell fracturing interference to multi-layer development.