Protein kinases play an important role in regulating the response to abiotic stress in plant. CIPKs are plant-specific signal transducers, and some members have been identified. However, the precise functions of novel CIPKs still remain unknown. Here we report that HbCIPK2 is a positive regulator of salt and osmotic stress tolerance. HbCIPK2 was screened out of the differentially expressed fragments from halophyte Hordeum brevisubulatum by cDNA-AFLP technique, and was a single-copy gene without intron. Expression of HbCIPK2 was increased by salt, drought and ABA treatment. HbCIPK2 is mainly localized to the plasma membrane and nucleus. Ectopic expression of 35S:HbCIPK2 not only rescued the salt hypersensitivity in Arabidopsis mutant sos2-1, but also enhanced salt tolerance in Arabidopsis wild type, and exhibited tolerance to osmotic stress during germination. The HbCIPK2 contributed to the ability to prevent K(+) loss in root and to accumulate less Na(+) in shoot resulting in K(+) /Na(+) homeostasis and protection of root cell from death, which is consistent with the gene expression profile of HbCIPK2-overexpressing lines. These findings imply possible novel HbCIPK2-mediated salt signalling pathways or networks in H. brevisubulatum.