A national genetic evaluation program for hoof health could be achieved by using hoof lesion data collected directly by hoof trimmers. However, not all cows in the herds during the trimming period are always presented to the hoof trimmer. This preselection process may not be completely random, leading to erroneous estimations of the prevalence of hoof lesions in the herd and inaccuracies in the genetic evaluation. The main objective of this study was to estimate genetic parameters for individual hoof lesions in Canadian Holsteins by using an alternative cohort to consider all cows in the herd during the period of the hoof trimming sessions, including those that were not examined by the trimmer over the entire lactation. A second objective was to compare the estimated heritabilities and breeding values for resistance to hoof lesions obtained with threshold and linear models. Data were recorded by 23 hoof trimmers serving 521 herds located in Alberta, British Columbia, and Ontario. A total of 73,559 hoof-trimming records from 53,654 cows were collected between 2009 and 2012. Hoof lesions included in the analysis were digital dermatitis, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, and white line disease. All variables were analyzed as binary traits, as the presence or the absence of the lesions, using a threshold and a linear animal model. Two different cohorts were created: Cohort 1, which included only cows presented to hoof trimmers, and Cohort 2, which included all cows present in the herd at the time of hoof trimmer visit. Using a threshold model, heritabilities on the observed scale ranged from 0.01 to 0.08 for Cohort 1 and from 0.01 to 0.06 for Cohort 2. Heritabilities estimated with the linear model ranged from 0.01 to 0.07 for Cohort 1 and from 0.01 to 0.05 for Cohort 2. Despite a low heritability, the distribution of the sire breeding values showed large and exploitable variation among sires. Higher breeding values for hoof lesion resistance corresponded to sires with a higher prevalence of healthy daughters. The rank correlations between estimated breeding values ranged from 0.96 to 0.99 when predicted using either one of the 2 cohorts and from 0.94 to 0.99 when predicted using either a threshold or a linear model.