Simple SummaryPollinators adjust their foraging preference based on the pollen cues of foraging plants. Honey bees, for example, prefer to collect one type of pollen from plants that bloom at the same time. In northern China, apricot and pear trees are the two main foraging plants in the early spring. However, honey bees tend to collect pollen from apricot trees. It is interesting to understand what affects the foraging decision of honey bees regarding these two pollen types. In this study, we observed the foraging preference of Apis mellifera workers with respect to apricot and pear pollen under laboratory conditions. The effect of pollen on the development of the hypopharyngeal gland (HG) and ovary was measured. The number of visits made to apricot pollen was significantly higher than that to pear pollen. Furthermore, the response of the HG and ovary to these two pollens was different. The development of the HG was significantly affected by pollen diet treatments. However, there was no significant difference in the ovarian development of caged workers supplied with the two different pollen diets. Overall, honey bees showed a significant preference for apricot pollen over pear pollen. Compared with the ovary, the HG of honey bee workers may be more sensitive to pollen nutrition.With the availability of various plants in bloom simultaneously, honey bees prefer to collect some pollen types over others. To better understand pollen’s role as a reward for workers, we compared the digestibility and nutritional value of two pollen diets, namely, pear (Pyrus bretschneideri Rehd.) and apricot (Armeniaca sibirica L.). We investigated the visits, pollen consumption, and pollen extraction efficiency of caged Apis mellifera workers. Newly emerged workers were reared, and the effects of two pollen diets on their physiological status (the development of hypopharyngeal glands and ovaries) were compared. The choice-test experiments indicated a significant preference of A. mellifera workers for apricot pollen diets over pear pollen diets (number of bees landing, 29.5 ± 8.11 and 9.25 ± 5.10, p < 0.001 and pollen consumption, 0.052 ± 0.026 g/day and 0.033 ± 0.013 g/day, p < 0.05). Both pollen diets had comparable extraction efficiencies (67.63% for pear pollen and 67.73% for apricot pollen). Caged workers fed different pollen diets also exhibited similar ovarian development (p > 0.05). However, workers fed apricot pollen had significantly larger hypopharyngeal glands than those fed pear pollen (p < 0.001). Our results indicated that the benefits conferred to honey bees by different pollen diets may influence their foraging preference.