Multidrug and toxin extrusion transporter 1 (MATE1), encoded by the SLC47A1 gene and single nucleotide polymorphisms of organic cation transport 1, may impact metformin's responsiveness and side effects. Inward-rectifier potassium channel 6.2 (Kir 6.2) subunits encoded by KCNJ11 may affect the response to sulfonylurea. This study aimed to evaluate the association between SLC22A1 rs72552763 and rs628031, SLC47A1 rs2289669 and KCNJ11 rs5219 genetic variations with sulfonylurea and metformin combination therapy efficacy and safety in Egyptian type 2 diabetes mellitus patients. This study was conducted on 100 cases taking at least one year of sulfonylurea and metformin combination therapy. Patients were genotyped via the polymerase chain reaction-restriction fragment length polymorphism technique. Then, according to their glycated hemoglobin level, cases were subdivided into non-responders or responders. Depending on metformin-induced gastrointestinal tract side effects incidence, patients are classified as tolerant or intolerant. KCNJ11 rs5219 heterozygous and homozygous mutant genotypes, SLC47A1 rs2289669 heterozygous and homozygous mutant genotypes (AA and AG), and mutant alleles of both polymorphisms were significantly related with increased response to combined therapy. Individuals with the SLC22A1 (rs72552763) GAT/del genotype and the SLC22A1 (rs628031) AG and AA genotypes were at a higher risk for metformin-induced gastrointestinal tract adverse effects. The results implied a role for SLC47A1 rs2289669 and KCNJ11 rs5219 in the responsiveness to combined therapy. SLC22A1 (rs628031) and (rs72552763) polymorphisms may be associated with increased metformin adverse effects in type 2 diabetes mellitus patients.