An <inline-formula><tex-math notation="LaTeX">$(n,m,t)$</tex-math></inline-formula>-homomorphic secret sharing (HSS) scheme for a function family <inline-formula><tex-math notation="LaTeX">$\cal F$</tex-math></inline-formula> allows <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula> clients to share their data <inline-formula><tex-math notation="LaTeX">$x_{1}, \ldots ,x_{n}$</tex-math></inline-formula> among <inline-formula><tex-math notation="LaTeX">$m$</tex-math></inline-formula> servers and then distribute the computation of any function <inline-formula><tex-math notation="LaTeX">$f\in {\cal F}$</tex-math></inline-formula> to the servers such that: (i) any <inline-formula><tex-math notation="LaTeX">$t$</tex-math></inline-formula> colluding servers learn no information about the data; (ii) each server is able to compute a partial result and <inline-formula><tex-math notation="LaTeX">$f(x_{1}, \ldots ,x_{n})$</tex-math></inline-formula> can be reconstructed from the servers' partial results. HSS schemes cannot guarantee correct reconstruction, if some servers are malicious and provide wrong partial results. Recently, verifiable HSS (VHSS) has been introduced to achieve an additional property: (iii) any <inline-formula><tex-math notation="LaTeX">$t$</tex-math></inline-formula> colluding servers cannot persuade the client(s) to accept their partial results and reconstruct a wrong value. The property (iii) is usually achieved by the client verifying the servers' partial results. A VHSS scheme is compact if the verification is substantially faster than locally computing <inline-formula><tex-math notation="LaTeX">$f(x_{1},\ldots ,x_{n})$</tex-math></inline-formula>. Of the existing VHSS schemes for polynomials, some are not compact; the others are compact but impose very heavy workload on the servers, even for low degree polynomials (e.g., they are at least 4000× slower than the existing HSS schemes in order to evaluate polynomials of degree <inline-formula><tex-math notation="LaTeX">$\leq 5$</tex-math></inline-formula>, which have many applications such as privacy-preserving machine learning). In this paper, we propose both a single-client VHSS (SVHSS) model and a multi-client VHSS (MVHSS) model. Our SVHSS allows a client to use a secret key to share its data among servers; our MVHSS allows multiple clients to share their data with a public key. For any integers <inline-formula><tex-math notation="LaTeX">$m,t>0$</tex-math></inline-formula>, we constructed both an <inline-formula><tex-math notation="LaTeX">$(m,t)$</tex-math></inline-formula>-SVHSS scheme and an <inline-formula><tex-math notation="LaTeX">$(m,t)$</tex-math></inline-formula>-MVHSS scheme that satisfy the properties of (i)-(iii). Our constructions are based on level-<inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula> homomorphic encryptions. The <inline-formula><tex-math notation="LaTeX">$(m,t)$</tex-math></inline-formula>-SVHSS and <inline-formula><tex-math notation="LaTeX">$(m,t)$</tex-math></inline-formula>-MVHSS are compact and allow the computations of degree-<inline-formula><tex-math notation="LaTeX">$d$</tex-math></inline-formula> polynomials for <inline-formula><tex-math notation="LaTeX">$d\leq ((k+1)m-1)/t$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$d\leq ((k+1)(m-t)-1)/t$</tex-math></inline-formula>, respectively. Experiments show that our schemes are much more efficient than the existing compact VHSS for low degree polynomials. For example, to compute polynomials of degree <inline-formula><tex-math notation="LaTeX">$\leq 5$</tex-math></inline-formula>, our MVHSS scheme is at least 420×faster. By applying SVHSS and MVHSS, we may add verifiability to privacy-preserving machine learning (PPML) algorithms. Experiments show that the resulting schemes are at least 52× and 20× faster than the existing verifiable PPML schemes.
Read full abstract