The capacity of the human complement regulatory protein CD59 to interact with terminal complement proteins in a species-selective manner was examined. When incorporated into chicken E, CD59 (purified from human E membranes) inhibited the cytolytic activity of the C5b-9 complex in a manner dependent on the species of origin of C8 and C9. Inhibition of C5b-9-mediated hemolysis was maximal when C8 and C9 were derived from human (hu) or baboon serum. By contrast, CD59 showed reduced activity when C8 and C9 were derived from dog or sheep serum, and no activity when C8 and C9 were derived from either rabbit or guinea pig (gp) serum. Similar specificity on the basis of the species of origin of C8 and C9 was also observed for CD59 endogenous to the human E membrane, using functionally blocking antibody against this cell surface protein to selectively abrogate its C5b-9-inhibitory activity. When E bearing human CD59 were exposed to C5b-8hu, CD59 was found to inhibit C5b-9-mediated lysis, regardless of the species of origin of C9, suggesting that the inhibitory function of CD59 can be mediated through recognition of species-specific domains expressed by human C8. Consistent with this interpretation, CD59 was found to bind to C5b-8hu but not to C5b67hu or C5b67huC8gp. Although CD59 failed to inhibit hemolysis mediated by C5b67huC8gpC9gp, its inhibitory function was observed for C5b67huC8gpC9hu, suggesting that, in addition to its interaction with C5b-8hu, CD59 also interacts in a species-selective manner with C9hu incorporated into C5b-9. Consistent with this interpretation, CD59 was found to bind both C5b67huC8gpC9hu and C5b-8huC9gp, but not C5b67huC8gpC9gp. Taken together, these data suggest that the capacity of CD59 to restrict the hemolytic activity of human serum complement involves a species-selective interaction of CD59, which involves binding to both the C8 and C9 components of the membrane attack complex. Although CD59 expresses selectivity for C8 and C9 of human origin, this "homologous restriction" is not absolute, and this human complement regulatory protein retains functional activity toward C8 and C9 of some nonprimate species.
Read full abstract