The aim of this paper is two-fold. Given a recollement (TâČ, T, Tâł, i*, i*, i!, j!, j*, j*), where TâČ, T, Tâł are triangulated categories with small coproducts and T is compactly generated. First, the authors show that the BBD-induction of compactly generated t-structures is compactly generated when i* preserves compact objects. As a con-sequence, given a ladder (TâČ, T, Tâł, T, TâČ) of height 2, then the certain BBD-induction of compactly generated t-structures is compactly generated. The authors apply them to the recollements induced by homological ring epimorphisms. This is the first part of their work. Given a recollement (D(B-Mod),D(A-Mod),D(C-Mod), i*, i*, i!, j!, j*, j*) induced by a homological ring epimorphism, the last aim of this work is to show that if A is Gorenstein, A B has finite projective dimension and j! restricts to D b (C-mod), then this recollement induces an unbounded ladder (B-Gproj,A-Gproj, C-Gproj) of stable categories of finitely generated Gorenstein-projective modules. Some examples are described.