Metallic materials, for example, stainless steel, titanium and its alloys, and tantalum, are widely used for medical implants in trauma surgery, orthopedic and oral medicine. Successful incorporation of these materials for design, fabrication and application of medical devices require that they meet several critical criteria. Paramount is their biocompatibility as expressed by their relative reactivity with human tissues. Another is their ability to provide sufficient mechanical strength, especially under cyclic loading conditions to ensure the durability of the medical devices made therefrom. Finally the material should be machinable and formable thereby enabling device fabrication at an affordable cost. In this paper we show that nanostructured commercial purity titanium produced by severe plastic deformation (SPD) opens new avenues and concepts for medical implants, providing benefits in all areas of medical device technology. Numerous clinical studies of medical devices fabricated from commercial purity (CP) titanium for trauma, orthopaedic and oral medicine has proven its excellent biocompatibility. However the mechanical strength of CP titanium is relatively low compared to other metals used in biomedical devices. Whereas the strength of this material can be increased by either alloying or secondary processing, for example rolling, drawing, etc., these enhancements normally come with some degradation in biometric response and fatigue behaviour. Recently it has been shown that nanostructuring of CP titanium by SPD processing can provide a new and promising alternative method for improving the mechanical properties of this material. This approach also has the benefit of enhancing the biological response of the CP titanium surface. This paper reports the results of the first developments and studies of nanostructured titanium (n-Ti), produced as long-sized rods with superior mechanical and biomedical properties and demonstrates its applicability for dental implants. The effort was conducted using commercially pure Grade 4 titanium [C – 0.052 %, O2 – 0.34 %, Fe – 0.3 %, N – 0.015 %, Ti-bal. (wt. pct.)]. Nanostructuring involved SPD processing by equal-channel angular pressing followed by thermo-mechanical treatment (TMT) using forging and drawing to produce 7 mm diameter bars with a 3 m length. This processing resulted in a large reduction in grain size, from the 25 lm equiaxed grain structure of the initial titanium rods to 150 nm after combined SPD and TMT processing, as shown in Figure 1. The selected area electron diffraction pattern, Figure 1(c), further suggests that the ultra fine grains contained predominantly high-angle non-equilibrium grain boundaries with increased grain-to-grain internal stresses. A similar structure for CP Ti can be produced in small discs using other SPD methods, for example – high pressure torsion (HPT) as studied in detail. In the present work it was essential to produce homogeneous ultrafine-grained structure throughout a three-meter length rod to enable the pilot production of implants and provide sufficient material for thorough testing of the mechanical and bio-medical properties of the nanostructured titanium. Table 1 illustrates mechanical property benefits attainable by nanostructuring of CP titanium, for example, the strength of the nanostructured titanium is nearly twice that of conventional CP titanium. Notably this improvement has been achieved without the drastic ductility reductions (to below C O M M U N IC A IO N S
Read full abstract