Abstract

Samples of an Mg-0.41Dy (wt. %) alloy were severely deformed by high-pressure torsion (HPT) at room temperature up to 15 turns and the texture, microstructure and microhardness values in the centres, mid-radial points and edges of the HPT-deformed discs were investigated using X-ray diffraction, Electron BackScatter Diffraction and Vickers microhardness measurements. The textures in the centres of discs were characterized by a typical weak basal fiber whereas at both the mid-points and edges of the discs there was a strong basal texture where the c-axis of most grains was shifted 15° away from the shear direction. An almost homogeneous ultrafine-grained structure with a grain size of about 0.75 μm was achieved after 15 HPT turns. The microhardness values in these three positions increased with increasing numbers of turns, reached a maximum and then decreased to a lower steady-state level at large strains. In addition to dislocation and grain size hardening, the results show that texture strengthening contributes significantly to the rapid increase in hardening in the early stages of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.