An efficient surrogate fuel formulation methodology, which directly uses the chemical structure information from nuclear magnetic resonance (NMR) spectroscopy analysis, has been proposed. Five functional groups, paraffinic CH2, paraffinic CH3, aromatic C-CH, olefinic CH-CH2, and cycloparaffin CH2, have been selected to show the basic molecular structure of the fuels for the advanced combustion engines (FACE) fuels. A palette that contains six candidate components, n-heptane, iso-octane, toluene, 2,5-dimethylhexane, methylcyclohexane, and 1-hexene, is chosen for different FACE fuels, based on the consideration that surrogate mixtures should provide the representative functional groups and comparable molecular sizes. The kinetic mechanisms of these six candidate components are chosen to assemble a detailed mechanism of each surrogate fuel for FACE gasoline. Whereafter, the accuracy of FACE A and F surrogate models was demonstrated by comparing the model predictions against experimental data in homogeneous ignition, jet stirred reactor oxidation, and premixed flame.
Read full abstract