AbstractA dimer model can be defined as a quiver embedded into a surface in such a way that the complement is a disjoint union of disks with oriented boundaries. Such models can also be considered in the case of a surface with boundary. The Postnikov diagrams used by J. Scott to describe the cluster structure of the homogeneous coordinate ring of the Grassmannian give rise to dimer models on a disk in this sense. We associate a natural algebra to such a dimer model. This algebra is a modified version of the corresponding Jacobian algebra, taking the boundary into account. Taking the sum of the idempotents corresponding to boundary vertices, we obtain an idempotent subalgebra, which we call the boundary algebra. We show that it is independent of the choice of dimer model and coincides with an algebra that B. Jensen, A. King and X. Su have used to model the cluster structure of the homogeneous coordinate ring of the Grassmannian categorically. This reports on joint work with A. King (Bath) and R. Marsh (Leeds) and with D. Bogdanic (Graz). (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Read full abstract