The development of a catalyst that delivers high activities and selectivities with excellent durability is of great importance. Numerous efficient catalysts suffer from the inherent hydrolysis liabilities, plaguing their practical applications. Herein, we show that this challenge can be tackled by constructing them into superhydrophobic porous frameworks, as exemplified by a water-sensitive phosphite ligand, tris(2-tert-butylphenyl) phosphite. The efficiency and long-term stability of the developed system are remarkably high in the hydroformylation of internal olefins after metalation with Rh species, superior to the corresponding homogeneous analogues. The significantly boosted hydrolytic stability allows for catalytic transformations using water as a green solvent, which not only facilitates the isolation of the products, but also furnishes the aldehydes with higher regioselectivities for the desired linear form in comparison with that operated under benchmark conditions using toluene as a reaction medium. Given these promising results, we anticipate the strategy advanced herein will form the basis for constructive perspectives in the enhancement of the water resistance of catalysts and the development of high performance hydroformylation catalysts.
Read full abstract