Background: Exercise is a fundamental primary standard of care for cardiometabolic health. Body Weight (BW) High-Intensity Interval Training (HIIT) is an effective strategy for reducing cardiometabolic markers in individuals with insulin resistance and Type-2 diabetes (T2D). High-mobility group box 1 (HMGB1), a ubiquitous nuclear factor, plays an ample role beyond an alarmin in T2D development and progression. Our group has described this novel role previously, showing the beneficial effect of whole body HMGB1 silencing in decreasing hyperglycemia in diabetic mice. In the present study we tested the hypothesis that BW-HIIT as an effective exercise training modality will decrease cardiometabolic risk with a concomitant decrease in circulating HMGB1 more prominently in insulin resistant individuals compared to non-insulin resistant individuals contrasting to what we can evidence in a preclinical murine model of insulin resistance; Methods: Human and mouse pre- and post-exercise serum/plasma samples were analyzed for Lipidomics as well as Metabolic and Cytokine Multiplex assays. Standard of care, as well as cardiometabolic parameters, was also performed in human subjects; Results: insulin resistant individuals had the most positive effect, primarily with a decrease in the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). as an index of insulin resistance as well as decreased HMGB1 post-exercise. Lipidomic analysis illustrated the highly beneficial effect of exercise training using a modified HIIT program, showing an enhanced panel of circulating lipids post-exercise exclusively in insulin resistant individuals. Plasma multiplex revealed significant translational heterogeneity in our studies with distinct metabolic hormone responses to exercise conditioning with a decrease in inflammatory markers in insulin resistant individuals; Conclusions: The current study demonstrated that 6-week BW-HIIT training improves cardiometabolic, anti-inflammatory markers, metabolic hormones, and insulin sensitivity in humans, strongly associated with decreased circulating HMGB1. Overall, these experiments reinforce the potential of HMGB1 as a marker of changes in insulin resistance and the positive effect of exercise training on insulin resistance possibly preventing the development of T2D and associated complications.
Read full abstract