Sodium (Na) can affect ecosystem function by altering soil fauna and microbial community composition and abundance. Sodium’s potential influences on plant-soil interactions, such as home-field advantage (HFA: enhanced decomposition in a home environment compared to an away environment), in relation to litter decomposition remains unclear. To fill this knowledge gap, we conducted a ten-month reciprocal litter transplant field experiment with Na amendments (0.005% and 0.5% water solution of NaCl) in both a subtropical broad-leaved forest dominated by Quercus variabilis (oak) and a coniferous artificial forest planted by Pinus massoniana (pine) in China. Litterbags with different mesh sizes were used to partition the impact of soil biota groups on the HFA. The results showed that 0.005% Na amendment facilitated litter decomposition as well as carbon (C) and nitrogen (N) mineralization by enhancing soil extracellular enzyme activity and soil faunal abundance. But 0.5% Na amendment inhibited litter decomposition in fine-mesh litterbags by decreasing microbial activity, and promoted litter decomposition in coarse-mesh litterbags by attracting more soil fauna. In the control plots, we observed a negative HFA in coarse-mesh litterbags (with most soil fauna and all soil microorganisms), and a positive HFA in fine-mesh litterbags (with complete exclusion of meso-and macrofauna). Whether the HFA was positive or negative (i.e. regardless of the direction of the HFA), Na amendments significantly decreased the magnitude of HFA by increasing the similarity of microbial community composition between the incubation fields (‘home’ vs. ‘away’) and decreasing selective foraging of soil fauna for different leaf litters. In sum, our results indicate that anthropogenic Na enrichment can decrease the effects of HFA through the modification of soil microbial and faunal communities, and thereby affect C sequestration and N cycling in subtropical forests.