Dairy cattle must allocate energy to milk production and reproduction. Therefore, understanding the environmental factors that affect conception rates in nulliparous and primiparous cows is helpful in appropriate feeding management strategies before and after calving. Accordingly, the aim of this study was to investigate the influence of environmental factors before and after the first calving on the conception rate, representing the starting point of milk production. The records of the first artificial insemination (AI) from Holstein nulliparous cows (n = 533,672) and primiparous cows (n = 516,710) in Hokkaido, Japan, were analyzed using separate multivariable logistic regression models. The mean conception rates for nulliparous and primiparous cows from 2012 to 2018 were 55.2 and 39.2%, respectively. In both nulliparous and primiparous cows, the conception rate of crossbreeding using Japanese Black (JB) semen was significantly higher than that for purebred Holstein breeding. The conception rate using sexed semen decreased in the warmer months only in nulliparous cows. Moreover, we grouped primiparous cows according to milk yield during peak lactation (PY; < 25, 25-30, 30-35, ≥35 kg) and the interval from calving to first insemination (CFI; < 60, 60-79, 80-99, ≥100 d), and evaluated their combined effect on the conception rate. Both PY and CFI strongly affected the conception rate in primiparous cows, which decreased with an increase in PY, even for the group with CFI ≥100 d; however, the conception rate increased for a CFI ≥60 d regardless of PY. Taken together, this study demonstrates the long-term effect of PY and an independent effect of CFI on the conception rate of cows. These results provide guidance for management to execute appropriate AI implementation strategies before and after lactation.