Let $$\lambda $$ be an integer, and $$f(z)=\sum _{n\gg -\infty } a(n)q^n$$ be a weakly holomorphic modular form of weight$$\lambda +\frac{1}{2}$$ on $$\Gamma _0(4)$$ with integral coefficients. Let $$\ell \ge 5$$ be a prime. Assume that the constant term a(0) is not zero modulo $$\ell $$. Further, assume that, for some positive integer m, the Fourier expansion of $$(f|U_{\ell ^m})(z) = \sum _{n=0}^\infty b(n)q^n$$ has the form $$\begin{aligned} (f|U_{\ell ^m})(z) \equiv b(0) + \sum _{i=1}^{t}\sum _{n=1}^{\infty } b(d_i n^2) q^{d_i n^2} \pmod {\ell }, \end{aligned}$$where $$d_1, \ldots , d_t$$ are square-free positive integers, and the operator $$U_\ell $$ on formal power series is defined by $$\begin{aligned} \left( \sum _{n=0}^\infty a(n)q^n \right) \bigg | U_\ell = \sum _{n=0}^\infty a(\ell n)q^n. \end{aligned}$$Then, $$\lambda \equiv 0 \pmod {\frac{\ell -1}{2}}$$. Moreover, if $${\tilde{f}}$$ denotes the coefficient-wise reduction of f modulo $$\ell $$, then we have $$\begin{aligned} \biggl \{ \lim _{m \rightarrow \infty } {\tilde{f}}|U_{\ell ^{2m}}, \lim _{m \rightarrow \infty } {\tilde{f}}|U_{\ell ^{2m+1}} \biggr \} = \biggl \{ a(0)\theta (z), a(0)\theta ^\ell (z) \in \mathbb {F}_{\ell }[[q]] \biggr \}, \end{aligned}$$where $$\theta (z)$$ is the Jacobi theta function defined by $$\theta (z) = \sum _{n\in \mathbb {Z}} q^{n^2}$$. By using this result, we obtain the distribution of the Fourier coefficients of weakly holomorphic modular forms in congruence classes. This applies to the congruence properties for traces of singular moduli.
Read full abstract