Abstract

Let D be the differential operator defined by D:=12πiddz. This induces a map Dk+1:M−k!(Γ0(N))→Mk+2!(Γ0(N)), where Mk!(Γ0(N)) is the space of weakly holomorphic modular forms of weight k on Γ0(N). The operator Dk+1 plays important roles in the theory of Eichler-Shimura cohomology and harmonic weak Maass forms. On the other hand, eta-quotients are fundamental objects in the theory of modular forms and partition functions. In this paper, we show that the structure of eta-quotients is very rarely preserved under the map Dk+1 between dual spaces M−k!(Γ0(N)) and Mk+2!(Γ0(N)). More precisely, we classify dual pairs (f,Dk+1f) under the map Dk+1 such that f is an eta-quotient and Dk+1f is a non-zero constant multiple of an eta-quotient. When the levels are square-free, we give the complete classification of such pairs. In general, we find a necessary condition for such pairs: the weight of the primitive eta-quotient f(z)=η(di1z)b1⋯η(ditz)bt is less than or equal to 4 and every prime divisor of each di is less than 11. We also give various applications of these classifications. In particular, we find all eta-quotients of weight 2 and square-free level N such that they are in the Eisenstein space for Γ0(N). To prove our main theorems, we use various combinatorial properties of a Latin square matrix whose rows and columns are exactly divisors of N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.