The holographic dark energy (HDE) model resides in quantum gravity in connection with the entropy, which requires an appropriate IR-cutoff to support the accelerating universe. Of these, the BHDE is corresponding to the quantum-corrected Barrow entropy SB∝A1+Δ/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S_{B}\\propto A^{1+\\Delta /2}$$\\end{document} for which the Granda–Oliveros (GO) IR-cutoff LIR=(αH2+βH˙)-12\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_{IR}=(\\alpha H^2 + \\beta \\dot{H})^{-\\frac{1}{2}}$$\\end{document} avoids the causality problem of the typically used future event-horizon. As the cosmological evolution of the model has recently been studied, we include the relic-neutrinos to constraint the well-motivated model’s parameters (α,β,Δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha , \\beta , \\Delta $$\\end{document}) along with the total mass of neutrinos ∑mν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum m_{\ u }$$\\end{document} and the effective number of their species Neff\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N_{eff}$$\\end{document} using a variety of the latest observational data. Utilizing the basic observations from 2018 Planck CMB-data, BAO-data, Pantheon sample of type Ia supernovae (SNIa), H(z) measurements of cosmic chronometers (CC) and various combinations of them, we find ∑mν<0.119\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum m_{\ u } < 0.119$$\\end{document} eV (95 % CL) for CMB + ALL combination, aligning with ∑mν<0.12\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum m_{\ u } < 0.12$$\\end{document} eV, (95% CL) of 2018 Planck release plus BAO data. The value of Neff=2.98-0.25+0.25\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N_{eff}=2.98^{+0.25}_{-0.25}$$\\end{document} (68% CL) is also determined which is consistent with BAO+Planck’s Neff=2.99-0.17+0.17\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N_{eff}=2.99^{+0.17}_{-0.17}$$\\end{document} (68% CL). The AIC analysis shows that the model (especially its α=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha =1$$\\end{document} case) is (mildly) favored over the concordance Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda $$\\end{document}CDM for that complete combination. Furthermore, the Barrow–Granda–Oliveros parameters are found in using the above datasets, as they get α=0.98-0.06+0.06\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha =0.98^{+0.06}_{-0.06}$$\\end{document}, β=0.597-0.08+0.07\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta =0.597^{+0.07}_{-0.08}$$\\end{document} and Δ=0.0054-0.0076+0.0076\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta =0.0054^{+0.0076}_{-0.0076}$$\\end{document} for CMB + ALL combination, where are in agreement with previous studies. The use of these best-fitting values in plotting the deceleration parameter q(z) shows that the universe undergoes a deceleration-acceleration transition at ztr=0.63\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$z_{tr}=0.63$$\\end{document}, by entering the current phase of dark-energy domination with q0=-0.573\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q_0=-\\,0.573$$\\end{document}.