Holographic techniques enable precise laser manipulation, but suffer from two considerable limitations: speckle and deterioration of axial distribution. Here, we propose a cylindrical quadratic phase (CQP) method with temporal focusing (TF) to generate speckle-free holographic illumination with high axial resolution. TF-CQP utilizes a superposed cylindrical phase as the initial guess to iteratively optimize phase hologram, realizing speckle-free holographic reconstruction on the target focal plane and eliminating secondary focus on the defocused planes. TF-CQP further disperses defocused beams symmetrically by a blazed grating, placed conjugate to the focal plane, which enhances axial confinement. Simulation and experimental results show that TF-CQP reconstructs speckle-free illumination with arbitrary shapes and <10 µm axial resolution. Compared to TF-GS (Gerchberg-Saxton algorithm), widely used in holographic optogenetics, TF-CQP shows increased uniformity of 200% and improved modulation efficiency of 32.33% for parallel holographic illumination, as well as a 10% increment in axial resolution.
Read full abstract