Abstract

Two-photon light-targeting optogenetics allows controlling selected subsets of neurons with near single-cell resolution and high temporal precision. To push forward this approach, we recently proposed a fast light-targeting strategy (FLiT) to rapidly scan multiple holograms tiled on a spatial light modulator (SLM). This allowed generating sub-ms timely-controlled switch of light patterns enabling to reduce the power budget for multi-target excitation and increase the temporal precision for relative spike tuning in a circuit. Here, we modified the optical design of FLiT by including a de-scan unit (deFLiT) to keep the holographic illumination centered at the middle of the objective pupil independently of the position of the tiled hologram on the SLM. This enables enlarging the number of usable holograms and reaching extended on-axis excitation volumes, and therefore increasing even further the power gain and temporal precision of conventional FLiT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call