The aim of this study is to investigate the improvement in the strength of a top-hat profile hollow-section beam used in a vehicle structure by attaching different shapes of internal reinforcements. The base structure of the beam was first considered as a hat-shape structure which was jointed to a flat plate using spot-welds. Three types of sheet metal reinforcements were formed and attached inside the beam’s structure. Then, they were tested experimentally under low-velocity lateral impact. Also, a numerical simulation is being developed using LS-DYNA explicit code and validated using experimental data. Valid numerical configuration is used to conduct an optimization study on cross-sectional shape of the internal reinforcing component. Optimizations are carried out using single- and multi-objective methods based on Genetic Algorithm approach and the suggested optimum solutions are compared with experimental results. Moreover, to discuss the feasibility of applied reinforcements on side section of a vehicle’s body-in-white, a realistic side-pole crash test is simulated using a validated vehicle model and performance of improved chassis is compared with basic model and results are presented, discussed and commented upon.
Read full abstract