Estimates of the material properties of hollow fibers suspended in a fluid using ultrasound measurements and a simple, computationally efficient analytical model are made. The industrial application is to evaluate the properties of wood fibers in paper pulp. The necessity of using a layered cylindrical model (LCM) as opposed to a solid cylindrical model (SCM) for modeling ultrasound attenuation in a suspension of hollow fibers is evaluated. The two models are described and used to solve the inverse problem of estimating material properties from attenuation in suspensions of solid and hollow polyester fibers. The results show that the measured attenuation of hollow fibers differs from that of solid fibers. Elastic properties estimates using LCM with hollow-fiber suspension measurements are similar to those using SCM with solid-fiber suspension measurements and compare well to block polyester values for elastic moduli. However, using the SCM with the hollow-fiber suspension did not produce realistic estimations. In conclusion, the LCM gives reasonable estimations of hollow fiber properties and the SCM is not sufficiently complex to model hollow fibers. The results also indicate that the use of a distributed radius in the model is important in estimating material properties from fiber suspensions.