The 2 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> waveband, specifically near <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.9~\mu \text{m}$ </tex-math></inline-formula> , is an imperative resource that could possibly be exploited in future communications systems. This is due to the promising infrastructural developments at the wavelength region (hollow-core photonic bandgap fiber, thulium-doped fiber amplifier) near <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.9~\mu \text{m}$ </tex-math></inline-formula> . In this work, we report the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times N$ </tex-math></inline-formula> selector switch based on Mach-Zehnder interferometers operating near the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.9~\mu \text{m}$ </tex-math></inline-formula> wavelength region. As an elementary cell ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N $ </tex-math></inline-formula> = <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</i> ), an insertion loss as low as 1.1 dB, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{P}_{\pi }$ </tex-math></inline-formula> of 23 mW, 10-90% switching time of lower than 38 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> and a crosstalk of lower than −25 dB from 1880 to 1955 nm has been determined. In order to prove scalability, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</i> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</i> switch <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(N $ </tex-math></inline-formula> = <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8)</i> is demonstrated, indicating crosstalk as low as −21 dB, considering all possible switching configurations across the abovementioned wavelength region. Insertion loss levels are examined.