[Abridged] We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 hrs at 5.3 GHz, yielding a 4.8 \pm 1.4 microJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4-8E+25 erg/s, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2E-14 erg/s/cm^2 (1-10 keV), corresponding to an Eddington ratio of ~4E-9 for a 7.5 solar mass black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ellr=alpha+beta*ellx (where ell denotes logarithmic luminosities), with beta=0.72\pm0.09. XTE J1118+480 is thus the third system, together with GX339-4 and V404 Cyg, for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ellx. We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors <=0.3 dex in both ellr and ellx, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope beta=0.61\pm0.03 and intrinsic scatter sigma_0=0.31\pm 0.03 dex.
Read full abstract